U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

Showing 1 - 10 of 12 results

Status:
Other

Class (Stereo):
CHEMICAL (ABSOLUTE)

Pantothenic acid (known as Vitamin B5) is a water-soluble member of the B-vitamin family that is converted into 4’-phosphopantetheine, which is then converted to co-enzyme A (CoA) via adenosine triphosphate. Pantothenic acid regulates epidermal barrier function and keratinocytes differentiation via CoA metabolism. Pantothenic acid is incorporated into co-enzyme A and protects cells against peroxidative damage by increasing the level of glutathione. A recent feasibility study has also shown that daily oral supplementation of a nutritional agent containing pantothenic acid for 8 weeks was feasible and safe. It was discovered the different pharmacological implementation of pantothenic acid, such as treatment of acne, obesity. Existed some reports, mentioned efficacy using pantothenic acid in systemic lupus erythematosus. Significant reduction in morning stiffness, degree of disability, and severity of pain was reported for persons taking pantothenic acid in case of osteoarthritis and rheumatoid arthritis. Vitamin B5 may increase the effects of a group of drugs called cholinesterase inhibitors, which are used to treat Alzheimer's disease. That might lead to severe side effects.
Status:
Possibly Marketed Outside US

Class (Stereo):
CHEMICAL (RACEMIC)

PANTOTHENIC ACID, (±)- is a racemic mixture of D-pantothenic acid and L-pantothenic acid. Only dextrorotatory isomer, also called vitamin B5, possess biological activity. Tht levorotatory form is an antagonist of D-pantothenic acid as was shown in animal experiments.
structurally diverse
Status:
US Approved Allergenic Extract (1972)

Class:
STRUCTURALLY DIVERSE

Streptomycin is a water-soluble aminoglycoside derived from Streptomyces griseus. Aminoglycosides work by binding to the bacterial 30S ribosomal subunit, causing misreading of t-RNA, leaving the bacterium unable to synthesize proteins vital to its growth. Aminoglycosides are useful primarily in infections involving aerobic, Gram-negative bacteria, such as Pseudomonas, Acinetobacter, and Enterobacter. In addition, some mycobacteria, including the bacteria that cause tuberculosis, are susceptible to aminoglycosides. Infections caused by Gram-positive bacteria can also be treated with aminoglycosides, but other types of antibiotics are more potent and less damaging to the host. In the past the aminoglycosides have been used in conjunction with penicillin-related antibiotics in streptococcal infections for their synergistic effects, particularly in endocarditis. Aminoglycosides are mostly ineffective against anaerobic bacteria, fungi and viruses. Aminoglycosides like Streptomycin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically Streptomycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. Streptomycin is indicated for the treatment of tuberculosis. May also be used in combination with other drugs to treat tularemia (Francisella tularensis), plague (Yersia pestis), severe M. avium complex, brucellosis, and enterococcal endocarditis (e.g. E. faecalis, E. faecium).
Viomycin is a basic peptide antibiotic, which is among the most effective agents against multidrug-resistant tuberculosis. The tuberactinomycins, such as Viomycin, target bacterial ribosomes, binding RNA and disrupting bacterial protein biosynthesis. Specifically, viomycin binds to a site on the ribosome which lies at the interface between helix 44 of the small ribosomal subunit and helix 69 of the large ribosomal subunit. The structures of this complexes suggest that the viomycin inhibits translocation by stabilizing the tRNA in the A site in the pretranslocation state.
Status:
US Previously Marketed
Source:
KECTIL DIHYDROSTREPTOMYCIN SULFATE by BRISTOL LABS
(1961)
Source URL:
First approved in 1948
Source:
Dihydrostreptomycin Sulfate by Merck
Source URL:

Class (Stereo):
CHEMICAL (ABSOLUTE)


Conditions:

Dihydrostreptomycin is an antibiotic compound derived from streptomycin by reduction with hydrogen. The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins, in addition it binds mechanosensitive channel of large conductance (MscL) and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. It has about the same degree of antibacterial activity as streptomycin, but it is less effective against some gram-negative microorganisms. Because it has a higher risk of irreversible deafness, and its effectiveness is no greater that that of streptomycin, dihydrostreptomycin is no longer used clinically. To date dihydrostreptomycin is approved for veterinary use to treat bacterial infections.

Showing 1 - 10 of 12 results